

Towards Efficient Solar Fuels Production *from materials to large-area devices*

Fatwa F. Abdi Institute for Solar Fuels Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Berlin, Germany E-Mail: fatwa.abdi@helmholtz-berlin.de Shared only for webinar participants Not for further distribution

Webinar Direktorat Riset dan Pengembangan

Universitas Indonesia, 14 Oktober 2020

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Wannsee - Lise-Meitner Campus

- BER-II Nuclear Research Reactor
- Compound semiconductor photovoltaics
- Solar Fuels
- Electrochemical energy storage (battery)
- Soft matter & functional materials
- Magnetic materials

Adlershof - Wilhelm-Conrad-Röntgen Campus

- BESSY-II Synchrotron
- Silicon & perovskite photovoltaics
- <u>Energy Materials In-situ Laboratory</u>
- Nano-architectures for Energy
- PV Competence Center Berlin (PVcomB)

Why Renewable Energy? Reducing CO₂ emission

Sunlight is the most abundant source of energy 120,000 TW vs. 30 TW (2050) Energy- and power-densities of chemical fuels are off the chart

Our energy use: 17% electricity, 83% fuels Large infrastructure for fuels

Fuels from sunlight

Is this possible?

$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$

 $2 H_2 O \rightarrow 2 H_2 + O_2$

fuels

Haber Bosch \rightarrow ammonia

chemical feedstock for Fischer-Tropsch \rightarrow methanol, diesel, etc.

The "Holy Grail" : Direct Photoelectrolysis

Requirements

- Good visible light absorption
- Suitable band edge positions
- Efficient O₂/H₂ evolution (catalysis)
- Efficient carrier transport
- High (photo)chemical stability

Low cost

We are interested at complex metal oxide semiconductors

A Success Story: Bismuth Vanadate (BiVO₄)

- Yellow pigment (paint, printing ink)
- Photocatalytically active: first reported by Kudo et al. in 1998
- Photoactive phase: monoclinic scheelite
- n-type, bandgap is 2.4 eV

Spray Deposition of BiVO₄ Thin Fllms

Precursor & Spray Parameters

- Solvent: ethanol + acetic acid
- 0.02 M Bi(NO₃)₃•5H₂O
- 0.02 M VO(AcAc)₂
- Substrate temperature: 450°C

Overcoming the Performance Limiting Factors

Performance limitations due to: AM1.5 illumination 1.5 - BiVO, as prepared Slow water oxidation kinetics BiVO, + Co-Pi catalyst \rightarrow deposit CoPi OEC ^[1] ^r (mA/cm²) 1.0 Poor carrier transport 0.5 \rightarrow doping with W^[2]; H insertion^[3] $2WO_3 + Bi_2O_3 \xrightarrow{2BiVO_4} 2Bi_{Bi}^x + 2W_V + 8O_0^x + \frac{1}{2}O_2(g) + 2e^{1/2}$ 0.0 $H_2(g) \rightarrow 2H_i^{\bullet} + 2e^{/}$ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Poor charge carrier separation

 \rightarrow dopant gradient ^[4]

 \rightarrow nanostructuring ^[5,6]

Electrodeposition BiVO₄ + CoPi Glass Glass CoPi BiVO₄ H₂O H

 $V_{RHF}(V)$

[1] J. Phys. Chem. C 116 (2012) 9398
[2] ChemCatChem 5 (2013) 490
[3] Adv. Energy Mater. 7 (2017) 1701536

[4] *Nat. Commun.* 4:2195 (2013)
[5] Kim et al. *Science* 343 (2014) 990
[6] Pihosh et al. *Sci. Rep.* 5 (2015) 11141

J. Phys. D. Appl. Phys. 50 (2017) 193002

Highest reported photocurrent already very close to the theoretical maximum

Oxide (BiVO₄)-based devices show increasing efficiencies

J. Phys. D. Appl. Phys. 50 (2017) 193002

How can we go beyond the theoretical limit?

Sulfur incorporation to reduce the bandgap of BiVO₄

 N-incorporation has also been reported, but not successful for our BiVO₄

Solar RRL 4 (2020) 1900290

Chem. Mater. 30 (2018) 8630

CuBi₂O₄ – a novel complex metal oxide

• Bandgap ~1.8 eV

- Mobility and diffusion length comparable to BiVO₄
- Band edges straddle the H₂ and O₂ evolution potential
- Large photovoltage ~1.0 V
- Stability is an issue protection layer

Chem. Mater. 28 (2016) 4231 J Mater. Chem. A 5 (2017) 12838 JACS 139 (2017) 15094 J Mater. Chem. A 7 (2019) 9183 APL Mater. 8 (2020) 061101

Ongoing collaboration with UI (Dr. M. Khalil) CuBi₂O₄/Bi NPs for photoelectrochemical CO₂ reduction to HCOOH

α -SnWO₄ – a novel complex metal oxide

- E_g ~ 1.9 eV; **STH_{max} > 20 %**
- Orthorhombic crystal structure
- $E_{FB} \sim 0 V vs. RHE$

- Thin films deposited using pulsed laser deposition (PLD)
- Bare film is unstable due to self-oxidation: • Sn²⁺ oxidizes to Sn⁴⁺
- NiO_x deposition extends the photoelectro-• chemical stability and we obtained record photocurrent of ~0.75 mA/cm²

Chem. Mater. 30 (2018) 8322

20

25

Understanding the limitations of α-SnWO₄/NiO_x

- Photovoltage (OCP) decreases with NiO_x deposition
- Hard X-ray Photoemission Spectroscopy (HAXPES) was performed at the BESSY-II synchrotron
- Films with different thicknesses of NiO_x were investigated with varying photon energies (i.e., different information depth)

Understanding the limitations of α -SnWO₄/NiO_x

100

80

60

40

20

0

0

W6+ (5d⁰)

D2- (2p6)

10

1.5 eV

 α -SnWO₄

Sn2+ (5s2) + O2- (2p6)

n(E) (states.eV-1.atom-1)

20

30

......

...:

NiO_x layer thickness (nm)

E-E_F (eV)

N

40

 α -SnWO₄ with Sn⁴⁺

n(E) (states.eV-1.atom-1)

Sn⁴⁺ relative contribution (%)

Patrick Schnell

hv=2 keV

hv=6 keV

W6+ (5d⁰)

Sn2+ (5s2)

O2- (2p6

 $(2p^6)$

- hv=4 keV

50

The presence of Sn⁴⁺ at the α -SnWO₄/NiO_x interface (as defects or SnO₂ phase) causes the limited photovoltage

Schnell et al. submitted

Next step: Scale-up!

Only a handful of reports (out of more than 100) demonstrated active area > 1 cm²

Multiphysics simulations are important in identifying losses

distance from anode (cm)

Sustainable Energy Fuels 4 (2020) 2734

distance from anode (cm)

In-situ pH measurement

Keisuke Obata

Simulation

Bulk pH change throughout the entire water splitting cell

Measurement by O_2 sensitive fluorescence film

Obata et al. in revision

Further experimental validation approach in our group

Bubble dynamics

Electrolyte velocity and pressure measurement

- Solar energy is the way to go
 - We just need to store it!! \rightarrow Solar Fuels
- Materials development is key in order to enable breakthroughs in photoelectrochemical water splitting
 - Progress in BiVO₄ has overcome many of the materials limitations; the bandgap now limits the achievable photocurrent
 - Sulfur incorporation shifts the bandgap by 0.3 eV (STH max. 12%)
 - $CuBi_2O_4$ or α -SnWO₄ is a promising novel oxide with 1.8-1.9 eV bandgap
- Scale-up is challenging; important to develop 'feeling' for this
 - The combination of modeling and experimental validation is powerful to fully unravel the limitations in electrochemical cells

Acknowledgements

Collaborators:

TU Berlin, DE – Reinhard Schomäcker
TU Delft, NL – Bernard Dam, Miro Zeman, Arno Smets
EPFL, CH – Sophia Haussener
NTU, SG – Lydia Wong
KAUST, SA – Luigi Cavallo, Moussab Harb

Funding:

Roel van de Krol, Peter Bogdanoff, David Starr, Marco Favaro, Dennis Friedrich, Karsten Harbauer, Christian Höhn, Marlene Lamers, Ji-Wook Jang, Yimeng Ma, Ibbi Ahmet, Rowshanak Irani, Moritz Kölbach, Patrick Schnell, Keisuke Obata, Roberto Duarte