Matchmaking riset dan kolaborasi UI dan APIK 11 Februari, 2021

Surface modification of metals by plasma electrolytic oxidation

Muhammad Prisla Kamil

Materials Electrochemistry Group School of Materials Science and Engineering Yeungnam University

1. Introduction

- Light metals
- Surface treatment methods
- Plasma electrolytic oxidation (PEO)

1-1 Introduction: Light metals

Advantages

High specific strength (AI, Mg, Ti) Good electrical and thermal conductivity (AI) Electromagnetic shielding (Mg) Biocompatibility (Ti)

Limitations

Relatively low strength (Mg, Al, Ti) Low corrosion resistance (Mg and Al) Poor surface hardness (Mg and Al) Bio inertia (Ti)

1-2 Introduction: Surface treatment methods

Sol-Gel

Electroplating

Important Features

• Eco-friendly

• High performance

• Excellent adhesion

- Functional properties
- Cost-effective
- Simple process

Anodizing

1-3 Introduction: Plasma electrolysis oxidation (PEO)

Electrochemical reaction at the cathode $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

1-4 Introduction: Plasma electrolysis oxidation (PEO)

Microstructure

Corrosion resistance

2. Research experience

- Fundamentals of PEO
- Structural properties
- Functionalization

2-1 Fundamentals of PEO

Processing-structure relationship

Control of plasma discharges¹

Surface TEM, STEM, EDAX Cross-section Base Base outer laye 5 mm 100 nm 20 s 180 s 300 s 540 s EDTA outer layer inner layer 5 nm 10µm 5 mm 5 mm 20 s 180 s 300 s 540 s Samples appearance Cu-EDTA iter lave EDTA Cu-EDTA Base 10µm 20 s 180 s 300 s 540 s 'soft' plasma

Structural characterizations^{1,2}

¹Kamil et al. Scientific Reports (2017) ²Kamil et al. Electrochemistry Communications (2018)

2-1 Fundamentals of PEO

Mechanism of plasma discharges¹

STEM, HRTEM, EDAX analyses

Impurity-rich area as ignition sites for plasma discharges

Impurity-induced discharges

Formation of plasma discharges on impurity sites Reduction of potential barrier by Poole-Frenkel effect

¹Kamil et al. Electrochemistry Communications (2018)

2-1 Fundamentals of PEO

Chemical characterizations

2-2 Structural properties

Sub-layered structures of PEO

Pure metal oxide¹

MgO

Inner layer : amorphous Outer layer : nanocrystalline

¹Kamil et al. Journal of Alloys and Compounds (2017) ²Kamil et al. Electrochemistry Communications (2018)

With incorporation of modifiers²

MgO + Mg₂SiO₄ Inner layer : nanocrystalline Outer layer : amorphous + nanocrystalline

2-2 Structural properties

Structure-corrosion properties relationship¹

DC-polarization technique

AC-impedance technique

¹Kamil et al. Chemical Engineering Journal (2020)

2-3 Functionalization

Exploration of new coating properties

Catalytic efficiency

$$\eta = \frac{C_0 - C_t}{C_0} \times 100\%$$

 η = catalytic efficiency

- C_0 = initial concentration of MB
- C_t = concentration of MB at a given time

Plateau starts from 24 h Long-term stability is confirmed by reusability test

¹Kamil et al. Chemical Engineering Journal (2020)

2-3 **Functionalization**

Theoretical calculations for modifier compounds

¹Kamil et al. Chemical Engineering Journal (2020)

3. Future potential

Metallic device with multiple functional properties

3 Exploration and improvement of practical applications

감사합니다

Thank you

Yeungnam University

ii In-house apparatus

1. Processing devices

2. Characterization devices

