

Webinar Series in TEM: Introduction to Transmission Electron Microscopy Part 1

Riza Iskandar

Application Scientist

Material Science

Material and Structural Analysis - APAC

Direktorat Riset & PENGEMBANGAN

The world leader in serving science

Various Microscopes

Microscopy is one of the few methodologies applied to nearly every field of science and technology in use today

Thermo Fisher

SCIENT

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What are the differences?
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
 - High-resolution TEM

Introduction to Transmission Electron Microscopy

Outline: Part 02

- Scanning Transmission Electron Microscopy (STEM)
- Spectroscopy in TEM
- Tomography in TEM: For 2D to 3D Imaging
- Sample Image Analysis
 - Good and Reliable TEM Data: How to produce and Analyze
 - Example of TEM Data
- TEM Facility in Universitas Indonesia

TEST QUIZ

Thermo Fisher

Which of the following is a figure of TEM?

С

thermoscientific

А

Which one is the image taken from TEM?

Α

В

С

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What is differences
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
- High-resolution TEM

Electron Microscope History

- 1897: Thompson describes the existence of negatively charged particles (electrons)
- 1925: De Broglie theorized that electrons have wave-like characteristics, addressing the wave/particle duality
- 1927: Thompson and Reid demonstrated the wave nature of electrons by diffraction experiments
- 1931: Ruska et al. build the first electron microscope (Nobel Prize in 1986)

What is TEM?

٠

- To see **small objects** which cannot be seen with naked eyes, light microscope or even a SEM.
- To obtain structural information of **small objects**
- To analyze the chemical compositions of small objects

Electron – Sample Interactions

Thermo Fisher s c | e N T | F | C

Thermo Fisher

TEM Basics

What can TEM Do?

Electron Diffraction pattern (SAED) taken from nano particles (left) as shown in TEM-BF (right)

Cat bone marrow with Feline Immunodeficiency Virus

EDX mapping of Cu and Fe elements distribution in steel

HRSTEM and HREDS SrTiO₃

Au-Ni-Cl nanoparticles

Magnetic Hexa-ferrite

How does TEM Work?

Slide Projector vs TEM

Slide Projector	Transmission Electron Microscope
Visible light	electron
Glass lenses	Electron-magnetic lenses
$\lambda = 450-650 \text{ nm}$	λ = 0.0025 nm (200 kV)
spatial resolution = 100 nm $(d > \lambda)$	spatial resolution = 0.24 nm $(d \cong \lambda)$

Why Use Electrons?

- The resolution of light microscopy is limited by the wavelength of visible light (400 700nm)*
- Electrons, that are particles as well as a wave, have much shorter wavelength, which gives much better resolution
- De Broglie equation: $\lambda = h/mv$

Wave	U (kV)	Relativistic (λ=nm)	$r_{\rm th} = 1.22\lambda/\beta$
	100 120	0.0037	δ
$\overline{}$	200	0.0025	
$ \rightarrow \lambda \rightarrow$	300	0.0020	image plane

*X-ray wavelength is about 0.05-0.25 nm

Electron Sources

Thermionic

Field Emission Gun (FEG)

 $\text{Tungsten}(W)/\text{LaB}_6 \rightarrow \text{SFEG} \rightarrow \text{XFEG} \rightarrow \text{X-CFEG}$

Lifetime SFEG is 5 times longer than LaB_6 LaB₆ = 1000 hours vs SFEG = 5000 hours Brighter sources Narrower energy spread Smaller emitter tip Better Performance

Optics: Image and Diffraction Formation

- Object plane: a plane contains object points
- Back focal plane (BFP): the focal plane lies behind the lens
- Image plane: a plane contains image points

QUIZ

- 1. A TEM is used to:
 - A. See small objects that cannot be seen with other imaging tools
 - B. Obtain structural information of small objects
 - c. Analyze the chemical compositions of small objects
 - D. A, B and C
- 2. A good TEM performance will depend on:
 - A. A higher acceleration voltage
 - B. Better electron sources
 - c. An expert operator
 - D. **A, B, C**
 - E. A and B

QUIZ

- 3. What from these statements are NOT true for FEG electron sources:
 - A. It has a smaller size of emitter tip than Thermionic electron sources
 - B. It has a longer operating time than Thermionic electron sources
 - c. It has a higher brightness level than Thermionic electron sources
 - D. It has a broader energy spread than Thermionic electron sources
- 4. The most important lens in the TEM is:
 - A. Condenser lens
 - B. Objective lens
 - c. Intermediate lens
 - D. Projective lens

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What are the differences?
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
- High-resolution TEM

What are the differences?

SEM: Scanning Electron Microscope

TEM: Transmission Electron Microscope

What are the differences?

SEM: Scanning Electron Microscope

- Smaller/shorter
- Acceleration voltage: 5kV 30 kV
- Resolution \geq 0.7 nm
- Focused scanning beam
- Larger specimen chamber
- Larger samples

Transmission Electron Microscope

- Larger/taller
- Acceleration voltage: 60-300kV or 30kV 1MV*
- Resolution ≤ 0.1 nm
- Broad static beam and focused scanning beam (STEM)*
- Smaller specimen chamber
- Thin samples of $\approx 100 \text{ nm}$

Samples

- Diameter: 2-3 mm
- Thickness: 100 150 nm

QUIZ

- 1. Which statements are true?
 - A. TEM's sample is more difficult to prepare than SEM's sample
 - B. Most SEM detectors are located below the sample
 - c. One can achieve resolution below 1 nm with SEM
 - D. Scanning mode is only used on SEM
- 2. Which of these are significant differences between SEM and S/TEM imaging?
 - A. Sample preparation
 - B. Image resolution
 - c. Contrast mechanism
 - D. Accelerate voltage

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What are the differences?
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
- High-resolution TEM

TEM Bright Field Image

SAED Patterns and respective TEM-BF with and without Objective Aperture (OA)

Edge of Objective Aperture

Thermo Fisher

SCIENTI

TEM Bright Field Image

Bright Field Imaging Formation

- Bright field is the standard mode for imaging
- Selected by the objective aperture (TEM) or the detector (STEM)
- In TEM mode, on-axis dark-field (beam tilting) is better than offaxis dark-field (aperture shifting)

Objective aperture (OA): an aperture that is used to produce TEM-BF or TEM-DF

Bright and Dark Field Imaging

Bright Field Experiment Important Factors

- Sample is in Eucentric height
- Use the thinner part of the sample
- Refocus the image for fine-tuning (Gaussian Focus)
- Switch to diffraction mode
- If the sample is single crystal, try to orient the sample into a zone axis
- Insert and center the objective aperture
- A smaller objective aperture will give more contrast
- The image can be acquired

- Eucentric height: a sample position where the center of the sample image does not shift during specimen tilt
- Gaussian focus: a focus (imaging) condition for an ideal lens without aberrations
- Zone axis: a direction to a group planes that parallel to certain direction

TEM-Dark Field Image

Bright and Dark Field Imaging

TEM-BF

100 nm

ThermoFisher SCIENTIFIC

TEM-Dark Field Image

Dark Field Imaging Formation

- Standard mode for imaging without the transmitted beam
- Loss of resolution due to higher C_s at off-axis positions
- Two types of DF-Images: Off-axis and On-axis DF

Thermo Fisher

Why TEM-DF is Important?

Benefit of Dark Field Image

- Grain Orientation
- Defect Analysis
- Phase formation

(a) Planes near an edge dislocation bend into the orientation for diffraction (b) BF image and (c) DF image of dislocations under a two-beam condition in an AI thin film. The inset in (b) shows the SAED pattern indicating the orientation condition for BF imaging.

QUIZ

1. Which one of the following images is the real TEM-BF?

Thermo Fisher S C I E N T I F I C

- A. |
- в. II
- C. III
- D. **I,II**
- E. II, III

QUIZ

QUIZ

- **3.** With TEM-DF image, one can not obtain information of:
 - A. Crystal Defects
 - B. Grain Orientation
 - c. Element Identification
 - D. Phase Distribution
- **4.** Which is valid for acquiring a TEM BF:
 - A. The sample must be in eucentric height
 - B. The sample must be in zone axis
 - c. The smallest objective aperture must be used
 - D. The camera shortest camera length must be used to increase the contrast

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What are the differences?
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
- High-resolution TEM

Electron Diffraction

X-rays vs Electron Diffraction

X-rays vs Electron Diffraction				
Parameter	X-rays	Electron		
Analysis	Intensity and position	Position		
Type of wavelength for single crystal	Multi-wavelength	Single-wavelength		
Acquisition time	Minutes to hours	Less than second		

Important facts about electron for diffraction:

- Electrons have shorter λ than X-rays
- Electron scattered more strongly
- Electron beams are easily directed

Single crystalline SAED pattern

SAED pattern Poly-crystalline SAED pattern

Amorphous SAED pattern

Type of Electron Diffraction in TEM

Three Main Electron Diffraction Techniques

Selected Area Electron Diffraction (SAED)

Convergence Beam Electron Diffraction (CBED)

SAED Procedure

- Make sure sample in eucentric height
- As the name, the aperture is always needed to select an area and produce the Electron Diffraction Pattern
- Always take above three images when acquiring SAED pattern

Orienting a single crystal using the diffraction pattern: Single Crystal

• A double tilt holder is needed!

Far from zone axis

Final adjusted SAED Pattern

Diffraction and Interference

I hermo F

General concept: monochromatic & coherent radiation

- elastic scattering
- constructive interference only in certain directions
- special case: $q_1 = 90^\circ$: high resolution TEM

Bragg Equation

2 $d \sin \theta = n \lambda$

hermo

d is the spacing of atoms which scatter the electrons*n* is the order of diffraction*θ* the Bragg angle

For electron diffraction, electron wavelength is small, θ is therefore small.

We expect diffraction from planes of atoms almost parallel to the incident electron beam.

(An Overview) SAED Pattern Analysis

For small angle of diffraction: $r/L = 2\theta$ But $\lambda = 2 d\theta$ $r/L = \lambda/d$ $r d = L \lambda$

Thermo Fisher

$L \lambda$ is the camera constant

SAED Pattern Analysis Procedures

- Make sure that the microscope is calibrated
- Measure the distance from reflections or rings to the main spot (d/2)

Thermo Fi

- Inversed the measured value
- Compare the data (dspacing) with database to find the phase presence

Convergence beam electron diffraction (CBED)

More Than Just Electron Diffraction

SAED pattern of Si <111>

- Small area $\leq 100 \text{ nm}$
- CBED gives quantitative data on
 - Specimen thickness
 - Crystallographic data such as unit cells, Bravais lattice, crystal system and 3D full symmetry
 - Precise lattice-strain measurements
 - Valence-electron distribution, structure factor, and chemical bonding
 - Characterization online and planar defects

CBED pattern of Si <111>

Ideal for relatively thicker sample

Nano Beam Electron Diffraction

Electron Diffraction on Small Volume

- Nanocrystals of Fe₃O₄ (magnetite), which have been incorporated in melt spinning polyvinylidene fluoride (PVDF) fibers.
- Experimental NBED in STEM mode (a) with corresponding simulated pattern (b).
- The frame colors refer to the position of electron beam during acquisition of the diffraction patterns.
- Domains or particles can be analyzed at nm-range by collection electron diffraction pattern.

Data countersy of N. Wirch Central Facility for Electron Microscopy, RWTH Aachen University

Electron Diffraction

QUIZ

- 1. Which is not the properties of electron for diffraction:
 - A. Electron has shorter λ than X-rays
 - **B.** Electron is less destructive than X-rays
 - c. Electron scattered more strongly
 - D. Electron beams are easily directed
- 2. The conditions that are needed to analyze SAED patterns:
 - A. The SAED pattern has been calibrated
 - B. The aperture must be inserted
 - c. The crystal must be oriented in the zone axis
 - D. The sample must be in eucentric height

Electron Diffraction

QUIZ

- 3. Convergence beam electron diffraction (CBED) can be used to produce diffraction on the size of:
 - A. 500 nm
 - в. 100 nm
 - c. 1 nm
- 4. What is true about CBED patterns?
 - A. Use an aperture to select an area of interest
 - **B.** Can give information about specimen thickness
 - c. Can provide information about chemical bounding
 - D. It is more suitable for a thicker TEM sample

Introduction to Transmission Electron Microscopy

Outline: Part 01

- TEM Basics
- SEM vs TEM: What are the differences?
- Conventional TEM Imaging
 - Bright-Field Imaging
 - Dark-Field Imaging
- Electron Diffraction
 - Selective Area Electron Diffraction
 - Convergence Beam Electron Diffraction
 - Nano Beam Electron Diffraction
- High-resolution TEM

Electron as a Wave

- Electron beam is a wave with *amplitude* (A) and phase (φ)
- The periodicity is the wave-length (e.g. 0.0025nm at 200kV) or, in terms of phase, 2π

Imaging Formation

Parallel Incoming electron beam (wave)

High-resolution TEM: Contrast Transfer Function (I)

- Point resolution is the function of Cs and λ
- It is the same for W, LaB6 and FEG
- But the information limit is different

- Point Resolution or Resolution:

 A wave number at which the phaseconstant transfer function at
 Scherzer focus intersects at phasezero axis
- Information limit:

Indicates the wave number at which phase information carried by the phase-contrast transfer function disappears.

High-resolution TEM: Contrast Transfer Function (II)

• CTF greatly depends on the focus value (Cs=1.2mm)

Thermo Fisher

Advanced TEM Imaging: High-resolution TEM

High-resolution TEM: What do we See on a HRTEM image?

Usually, you can not say where the atom is, but you can tell the distance on atomic scale and crystal defects

Thermo Físhei

HRTEM and HR-STEM Imaging

HRTEM and HR-STEM images showing the atomic structure of Si₃Ni₄

• Si+4 N-3

Thermo Fisher

High-resolution TEM

A good and Reliable HRTEM Image

- Sample:
 - Very thin $\leq 50 \text{ nm}$
 - Free from contamination
- Sample position:
 - Eucentric height
 - Oriented in one low zone axis ([001], [120])
- Instrument:
 - Stable enough, i.e. HT on not less than 2 hours
 - No or less sample drift
 - The beam is well aligned
 - Highest magnification as possible*
 - Adequate acquisition time
 - Focus series applied for acquisition

QUIZ

- 1. To produce High-resolution TEM images (samples perspective):
 - A. Very thin
 - B. Crystalline
 - c. Oriented on a zone axis
 - D. Cannot work with powder samples
- 2. Point Resolution depends on the following factors:
 - A. Spherical Chromatic Aberration (Cs)
 - B. Electron Sources
 - c. Wavelength (λ)
 - D. Operation Voltage

QUIZ

- **3.** The information that we can get from HRTEM images:
 - A. The exact atomic position
 - B. The structure of the sample
 - c. The type of atom
 - D. The distance on an atomic scale and crystal defects

Thank you

56 mohamadriza.iskandar@thermofisher.com | 30-June-2021